ADOMD.NET: Beyond Rows and Columns – The Multidimensional Evolution of ADO.NET

ADOMD.NET: Beyond Rows and Columns – The Multidimensional Evolution of ADO.NET

When I first encountered the challenge of migrating hundreds of Visual Basic 6 reports to .NET, I never imagined it would lead me down a path of discovering specialized data analytics tools. Today, I want to share my experience with ADOMD.NET and how it could have transformed our reporting challenges, even though we couldn’t implement it due to our database constraints.

The Challenge: The Sales Gap Report

The story begins with a seemingly simple report called “Sales Gap.” Its purpose was critical: identify periods when regular customers stopped purchasing specific items. For instance, if a customer typically bought 10 units monthly from January to May, then suddenly stopped in June and July, sales representatives needed to understand why.

This report required complex queries across multiple transactional tables:

  • Invoicing
  • Sales
  • Returns
  • Debits
  • Credits

Initially, the report took about a minute to run. As our data grew, so did the execution time—eventually reaching an unbearable 15 minutes. We were stuck with a requirement to use real-time transactional data, making traditional optimization techniques like data warehousing off-limits.

Enter ADOMD.NET: A Specialized Solution

ADOMD.NET (ActiveX Data Objects Multidimensional .NET) emerged as a potential solution. Here’s why it caught my attention:

Key Features:

  1. Multidimensional Analysis

    Unlike traditional SQL queries, ADOMD.NET uses MDX (Multidimensional Expressions), specifically designed for analytical queries. Here’s a basic example:

    string mdxQuery = @"
        SELECT 
            {[Measures].[Sales Amount]} ON COLUMNS,
            {[Date].[Calendar Year].MEMBERS} ON ROWS
        FROM [Sales Cube]
        WHERE [Product].[Category].[Electronics]";
  2. Performance Optimization

    ADOMD.NET is built for analytical workloads, offering better performance for complex calculations and aggregations. It achieves this through:

    • Specialized data structures for multidimensional analysis
    • Efficient handling of hierarchical data
    • Built-in support for complex calculations
  3. Advanced Analytics Capabilities

    The tool supports sophisticated analysis patterns like:

    string mdxQuery = @"
        WITH MEMBER [Measures].[GrowthVsPreviousYear] AS
            ([Measures].[Sales Amount] - 
            ([Measures].[Sales Amount], [Date].[Calendar Year].PREVMEMBER)
            )/([Measures].[Sales Amount], [Date].[Calendar Year].PREVMEMBER)
        SELECT 
            {[Measures].[Sales Amount], [Measures].[GrowthVsPreviousYear]} 
        ON COLUMNS...";

Lessons Learned

While we couldn’t implement ADOMD.NET due to our use of Pervasive Database instead of SQL Server, the investigation taught me valuable lessons about report optimization:

  1. The importance of choosing the right tools for analytical workloads
  2. The limitations of running complex analytics on transactional databases
  3. The value of specialized query languages for different types of data analysis

Modern Applications

Today, ADOMD.NET continues to be relevant for organizations using:

  • SQL Server Analysis Services (SSAS)
  • Azure Analysis Services
  • Power BI Premium datasets

If I were facing the same challenge today with SQL Server, ADOMD.NET would be my go-to solution for:

  • Complex sales analysis
  • Customer behavior tracking
  • Performance-intensive analytical reports

Conclusion

While our specific situation with Pervasive Database prevented us from using ADOMD.NET, it remains a powerful tool for organizations using Microsoft’s analytics stack. The experience taught me that sometimes the solution isn’t about optimizing existing queries, but about choosing the right specialized tools for analytical workloads.

Remember: Just because you can run analytics on your transactional database doesn’t mean you should. Tools like ADOMD.NET exist for a reason, and understanding when to use them can save countless hours of optimization work and provide better results for your users.

 

Back to the Future of Dev Tools: DevExpress CLI templates

Back to the Future of Dev Tools: DevExpress CLI templates

My mom used to say that fashion is cyclical – whatever you do will eventually come back around. I’ve come to realize the same principle applies to technology. Many technologies have come and gone, only to resurface again in new forms.

Take Command Line Interface (CLI) commands, for example. For years, the industry pushed to move away from CLI towards graphical interfaces, promising a more user-friendly experience. Yet here we are in 2025, witnessing a remarkable return to CLI-based tools, especially in software development.

As a programmer, efficiency is key – particularly when dealing with repetitive tasks. This became evident when my business partner Javier and I decided to create our own application templates for Visual Studio. The process was challenging, mainly because Visual Studio’s template infrastructure isn’t well maintained. Documentation was sparse, and the whole process felt cryptic.

Our first major project was creating a template for Xamarin.Forms (now .NET MAUI), aiming to build a multi-target application template that could work across Android, iOS, and Windows. We relied heavily on James Montemagno’s excellent resources and videos to navigate this complex territory.

The task became significantly easier with the introduction of the new SDK-style projects. Compared to the older MSBuild project types, which were notoriously complex to template, the new format makes creating custom project templates much more straightforward.

In today’s development landscape, most application templates are distributed as NuGet packages, making them easier to share and implement. Interestingly, these packages are primarily designed for CLI use rather than Visual Studio’s graphical interface – a perfect example of technology coming full circle.

Following this trend, DevExpress has developed a new set of application templates that work cross-platform using the CLI. These templates leverage SkiaSharp for UI rendering, enabling true multi-IDE and multi-OS compatibility. While they’re not yet compatible with Apple Silicon, that support is likely coming in future updates.

The templates utilize CLI under the hood to generate new project structures. When you install these templates in Visual Studio Code or Visual Studio, they become available through both the CLI and the graphical interface, offering developers the best of both worlds.

Here is the official DevExpress blog post for the new application templates

https://www.devexpress.com/subscriptions/whats-new/#project-template-gallery-net8

Templates for Visual Studio

DevExpress Template Kit for Visual Studio – Visual Studio Marketplace

Templates for VS Code

DevExpress Template Kit for VS Code – Visual Studio Marketplace

If you want to see the list of the new installed DevExpress templates, you can use the following command on the terminal

dotnet new list dx

 

I’d love to hear your thoughts on this technological cycle. Which approach do you prefer for creating new projects – CLI or graphical interface? Let me know in the comments below!

 

The Dark Magic of Dynamic Assemblies: A Tale of .NET Emit

The Dark Magic of Dynamic Assemblies: A Tale of .NET Emit

Every programmer encounters that one technology that draws them into the darker arts of software development. For some, it’s metaprogramming; for others, it’s assembly hacking. For me, it was the mysterious world of runtime code generation through Emit in the early 2000s, during my adventures with XPO and the enigmatic Sage Accpac ERP.

The Quest Begins: A Tale of Documentation and Dark Arts

Back in the early 2000s, when the first version of XPO was released, I found myself working alongside my cousin Carlitos in our startup. Fresh from his stint as an ERP consultant in the United States, Carlitos brought with him deep knowledge of Sage Accpac, setting us on a path to provide integration services for this complex system.

Our daily bread and butter were custom reports – starting with Crystal Reports before graduating to DevExpress’s XtraReports and XtraPivotGrid. But we faced an interesting challenge: Accpac’s database was intentionally designed to resist reverse engineering, with flat tables devoid of constraints or relationships. All we had was their HTML documentation, a labyrinth of interconnected pages holding the secrets of their entity relationships.

Genesis: When Documentation Meets Dark Magic

This challenge birthed Project Genesis, my ambitious attempt to create an XPO class generator that could parse Accpac’s documentation. The first hurdle was parsing HTML – a quest that led me to CodePlex (yes, I’m dating myself here) and the discovery of HTMLAgilityPack, a remarkable tool that still serves developers today.

But the real dark magic emerged when I faced the challenge of generating classes dynamically. Buried in our library’s .NET books, I discovered the arcane art of Emit – a powerful technique for runtime assembly and class generation that would forever change my perspective on what’s possible in .NET.

Diving into the Abyss: Understanding Emit

At its core, Emit is like having a magical forge where you can craft code at runtime. Imagine being able to write code that writes more code – not just as text to be compiled later, but as actual, executable IL instructions that the CLR can run immediately.

AssemblyName assemblyName = new AssemblyName("DynamicAssembly");
AssemblyBuilder assemblyBuilder = AssemblyBuilder.DefineDynamicAssembly(
    assemblyName, 
    AssemblyBuilderAccess.Run
);

This seemingly simple code opens a portal to one of .NET’s most powerful capabilities: dynamic assembly generation. It’s the beginning of a spell that allows you to craft types and methods from pure thought (and some carefully crafted IL instructions).

The Power and the Peril

Like all dark magic, Emit comes with its own dangers and responsibilities. When you’re generating IL directly, you’re dancing with the very fabric of .NET execution. One wrong move – one misplaced instruction – and your carefully crafted spell can backfire spectacularly.

The first rule of Emit Club is: don’t use Emit unless you absolutely have to. The second rule is: if you do use it, document everything meticulously. Your future self (and your team) will thank you.

Modern Alternatives and Evolution

Today, the .NET ecosystem offers alternatives like Source Generators that provide similar power with less risk. But understanding Emit remains valuable – it’s like knowing the fundamental laws of magic while using higher-level spells for daily work.

In my case, Project Genesis evolved beyond its original scope, teaching me crucial lessons about runtime code generation, performance optimization, and the delicate balance between power and maintainability.

Conclusion: The Magic Lives On

Twenty years later, Emit remains one of .NET’s most powerful and mysterious features. While modern development practices might steer us toward safer alternatives, understanding these fundamental building blocks of runtime code generation gives us deeper insight into the framework’s capabilities.

For those brave enough to venture into this realm, remember: with great power comes great responsibility – and the need for comprehensive unit tests. The dark magic of Emit might be seductive, but like all powerful tools, it demands respect and careful handling.

The Dark Arts of Self-Writing Code: A Journey from DOS to .NET Sorcery

The Dark Arts of Self-Writing Code: A Journey from DOS to .NET Sorcery

The Beginning of a Digital Sorcerer

Every master of the dark arts has an origin story, and mine begins in the ancient realm of MS-DOS 6.1. What started as simple experimentation with BAT files would eventually lead me down a path to discovering one of programming’s most powerful arts: metaprogramming.

I still remember the day my older brother Oscar introduced me to the mystical DIR command. He was three years ahead of me in school, already initiated into the computer classes that would begin in “tercer ciclo” (7th through 9th grade) in El Salvador. This simple command, capable of revealing the contents of directories, was my first spell in what would become a lifelong pursuit of programming magic.

My childhood hobbies – playing video games, guitar, and piano (a family tradition, given my father’s musical lineage) – faded into the background as I discovered the enchanting world of DOS commands. The discovery that files ending in .exe were executable spells and .com files were commands that accepted parameters opened up a new realm of possibilities.

Armed with EDIT.COM, a primitive but powerful text editor, I began experimenting with every file I could find. The real breakthrough came when I discovered AUTOEXEC.BAT, a mystical scroll that controlled the DOS startup ritual. This was my first encounter with automated script execution, though I didn’t know it at the time.

The Path of Many Languages

My journey through the programming arts led me through many schools of magic: Turbo Pascal, C++, Fox Pro (more of an application framework than a pure language), Delphi, VB6, VBA, VB.NET, and finally, my true calling: C#.

During my university years, I co-founded my first company with my cousin “Carlitos,” supported by my uncle Carlos Melgar, who had been like a father to me. While we had some coding experience, our ambition to create our own ERP system led us to expand our circle. This is where I met Abel, one of two programmers we recruited who were dating my cousins at the time. Abel, coming from a Delphi background, introduced me to a concept that would change my understanding of programming forever: reflection.

Understanding the Dark Arts of Metaprogramming

What Abel revealed to me that day was just the beginning of my journey into metaprogramming, a form of magic that allows code to examine and modify itself at runtime. In the .NET realm, this sorcery primarily manifests through reflection, a power that would have seemed impossible in my DOS days.

Let me share with you the secrets I’ve learned along this path:

The Power of Reflection: Your First Spell

// A basic spell of introspection
Type stringType = typeof(string);
MethodInfo[] methods = stringType.GetMethods();
foreach (var method in methods)
{
    Console.WriteLine($"Discovered spell: {method.Name}");
}

This simple incantation allows your code to examine itself, revealing the methods hidden within any type. But this is just the beginning.

Conjuring Objects from the Void

As your powers grow, you’ll learn to create objects dynamically:

public class ObjectConjurer
{
    public T SummonAndEnchant<T>(Dictionary<string, object> properties) where T : new()
    {
        T instance = new T();
        Type type = typeof(T);
        
        foreach (var property in properties)
        {
            PropertyInfo prop = type.GetProperty(property.Key);
            if (prop != null && prop.CanWrite)
            {
                prop.SetValue(instance, property.Value);
            }
        }
        return instance;
    }
}

Advanced Rituals: Expression Trees

Expression<Func<int, bool>> ageCheck = age => age >= 18;
var parameter = Expression.Parameter(typeof(int), "age");
var constant = Expression.Constant(18, typeof(int));
var comparison = Expression.GreaterThanOrEqual(parameter, constant);
var lambda = Expression.Lambda<Func<int, bool>>(comparison, parameter);

The Price of Power: Security and Performance

Like any powerful magic, these arts come with risks and costs. Through my journey, I learned the importance of protective wards:

Guarding Against Dark Forces

// A protective ward for your reflective operations
[SecurityPermission(SecurityAction.Demand, ControlEvidence = true)]
public class SecretKeeper
{
    private readonly string _arcaneSecret = "xyz";
    
    public string RevealSecret(string authToken)
    {
        if (ValidateToken(authToken))
            return _arcaneSecret;
        throw new ForbiddenMagicException("Unauthorized attempt to access secrets");
    }
}

The Cost of Power

Ritual Type Energy Cost (ms) Mana Usage
Direct Cast 1 Baseline
Reflection 10-20 2x-3x
Cached Cast 2-3 1.5x
Compiled 1.2-1.5 1.2x

To mitigate these costs, I learned to cache my spells:

public class SpellCache
{
    private static readonly ConcurrentDictionary<string, MethodInfo> SpellBook 
        = new ConcurrentDictionary<string, MethodInfo>();

    public static MethodInfo GetSpell(Type type, string spellName)
    {
        string key = $"{type.FullName}.{spellName}";
        return SpellBook.GetOrAdd(key, _ => type.GetMethod(spellName));
    }
}

Practical Applications in the Modern Age

Today, these dark arts power many of our most powerful frameworks:

  • Entity Framework uses reflection for its magical object-relational mapping
  • Dependency Injection containers use it to automatically wire up our applications
  • Serialization libraries use it to transform objects into different forms
  • Unit testing frameworks use it to create test doubles and verify behavior

Wisdom for the Aspiring Sorcerer

From my journey from DOS batch files to the heights of .NET metaprogramming, I’ve gathered these pieces of wisdom:

  1. Cache your incantations whenever possible
  2. Guard your secrets with proper wards
  3. Measure the cost of your rituals
  4. Use direct casting when available
  5. Document your dark arts thoroughly

Conclusion

Looking back at my journey from those first DOS commands to mastering the dark arts of metaprogramming, I’m reminded that every programmer’s path is unique. That young boy who first typed DIR in MS-DOS could never have imagined where that path would lead. Today, as I work with advanced concepts like reflection and metaprogramming in .NET, I’m reminded that our field is one of continuous learning and evolution.

The dark arts of metaprogramming may be powerful, but like any tool, their true value lies in knowing when and how to use them effectively. Remember, while the ability to make code write itself might seem like sorcery, the real magic lies in understanding the fundamentals and growing from them. Whether you’re starting with basic commands like I did or diving straight into advanced concepts, every step of the journey contributes to your growth as a developer.

And who knows? Maybe one day you’ll find yourself teaching these dark arts to the next generation of digital sorcerers.

The AnyCPU Illusion: Native Dependencies in .NET Applications

The AnyCPU Illusion: Native Dependencies in .NET Applications

Introduction

In the .NET ecosystem, “AnyCPU” is often considered a silver bullet for cross-platform deployment. However, this assumption can lead to significant problems when your application depends on native assemblies. In this post, I want to share a personal story that highlights how I discovered these limitations and how native dependencies affect the true portability of AnyCPU applications, especially for database access through ADO.NET and popular ORMs.

My Journey to Understanding AnyCPU’s Limitations

Every year, around Thanksgiving or Christmas, I visit my friend, brother, and business partner Javier. Two years ago, during one of these visits, I made a decision that would lead me to a pivotal realization about AnyCPU architecture.

At the time, I was tired of traveling with my bulky MSI GE72 Apache Pro-24 gaming laptop. According to MSI’s official specifications, it weighed 5.95 pounds—but that number didn’t include the hefty charger, which brought the total to around 12 pounds. Later, I upgraded to an MSI GF63 Thin, which was lighter at 4.10 pounds—but with the charger, it was still around 7.5 pounds. Lugging these laptops through airports felt like a workout.

Determined to travel lighter, I purchased a MacBook Air with the M2 chip. At just 2.7 pounds, including the charger, the MacBook Air felt like a breath of fresh air. The Apple Silicon chip was incredibly fast, and I immediately fell in love with the machine.

Having used a MacBook Pro with Bootcamp and Windows 7 years ago, I thought I could recreate that experience by running a Windows virtual machine on my MacBook Air to check projects and do some light development while traveling.

The Virtualization Experiment

As someone who loves virtualization, I eagerly set up a Windows virtual machine on my MacBook Air. I grabbed my trusty Windows x64 ISO, set up the virtual machine, and attempted to boot it—but it failed. I quickly realized the issue was related to CPU architecture. My x64 ISO wasn’t compatible with the ARM-based M2 chip.

Undeterred, I downloaded a Windows 11 ISO for ARM architecture and created the VM. Success! Windows was up and running, and I installed Visual Studio along with my essential development tools, including DevExpress XPO (my favorite ORM).

The Demo Disaster

The real test came during a trip to Dubai, where I was scheduled to give a live demo showcasing how quickly you can develop Line-of-Business (LOB) apps with XAF. Everything started smoothly until I tried to connect my XAF app to the database. Despite my best efforts, the connection failed.

In the middle of the demo, I switched to an in-memory data provider to salvage the presentation. After the demo, I dug into the issue and realized the root cause was related to the CPU architecture. The native database drivers I was using weren’t compatible with the ARM architecture.

A Familiar Problem

This situation reminded me of the transition from x86 to x64 years ago. Back then, I encountered similar issues where native drivers wouldn’t load unless they matched the process architecture.

The Native Dependency Challenge

Platform-Specific Loading Requirements

Native DLLs must exactly match the CPU architecture of your application:

  • If your app runs as x86, it can only load x86 native DLLs.
  • If running as x64, it requires x64 native DLLs.
  • ARM requires ARM-specific binaries.
  • ARM64 requires ARM64-specific binaries.

There is no flexibility—attempting to load a DLL compiled for a different architecture results in an immediate failure.

How Native Libraries are Loaded

When your application loads a native DLL, the operating system follows a specific search pattern:

  1. The application’s directory
  2. System directories (System32/SysWOW64)
  3. Directories listed in the PATH environment variable

Crucially, these native libraries must match the exact architecture of the running process.

// This seemingly simple code
[DllImport("native.dll")]
static extern void NativeMethod();

// Actually requires:
// - native.dll compiled for x86 when running as 32-bit
// - native.dll compiled for x64 when running as 64-bit
// - native.dll compiled for ARM64 when running on ARM64

The SQL Server Example

Let’s look at SQL Server connectivity, a common scenario where the AnyCPU illusion breaks down:

// Traditional ADO.NET connection
using (var connection = new SqlConnection(connectionString))
{
    // This requires SQL Native Client
    // Which must match the process architecture
    await connection.OpenAsync();
}

Even though your application is compiled as AnyCPU, the SQL Native Client must match the process architecture. This becomes particularly problematic on newer architectures like ARM64, where native drivers may not be available.

Impact on ORMs

Entity Framework Core

Entity Framework Core, despite its modern design, still relies on database providers that may have native dependencies:

public class MyDbContext : DbContext
{
    protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
    {
        // This configuration depends on:
        // 1. SQL Native Client
        // 2. Microsoft.Data.SqlClient native components
        optionsBuilder.UseSqlServer(connectionString);
    }
}

DevExpress XPO

DevExpress XPO faces similar challenges:

// XPO configuration
string connectionString = MSSqlConnectionProvider.GetConnectionString("server", "database");
XpoDefault.DataLayer = XpoDefault.GetDataLayer(connectionString, AutoCreateOption.DatabaseAndSchema);

// The MSSqlConnectionProvider relies on the same native SQL Server components

Solutions and Best Practices

1. Architecture-Specific Deployment

Instead of relying on AnyCPU, consider creating architecture-specific builds:

<PropertyGroup>
    <Platforms>x86;x64;arm64</Platforms>
    <RuntimeIdentifiers>win-x86;win-x64;win-arm64</RuntimeIdentifiers>
</PropertyGroup>

2. Runtime Provider Selection

Implement smart provider selection based on the current architecture:

public static class DatabaseProviderFactory
{
    public static IDbConnection GetProvider()
    {
        return RuntimeInformation.ProcessArchitecture switch
        {
            Architecture.X86 => new SqlConnection(), // x86 native provider
            Architecture.X64 => new SqlConnection(), // x64 native provider
            Architecture.Arm64 => new Microsoft.Data.SqlClient.SqlConnection(), // ARM64 support
            _ => throw new PlatformNotSupportedException()
        };
    }
}

3. Managed Fallbacks

Implement fallback strategies when native providers aren’t available:

public class DatabaseConnection
{
    public async Task<IDbConnection> CreateConnectionAsync()
    {
        try
        {
            var connection = new SqlConnection(_connectionString);
            await connection.OpenAsync();
            return connection;
        }
        catch (DllNotFoundException)
        {
            var managedConnection = new Microsoft.Data.SqlClient.SqlConnection(_connectionString);
            await managedConnection.OpenAsync();
            return managedConnection;
        }
    }
}

4. Deployment Considerations

  • Include all necessary native dependencies for each target architecture.
  • Use architecture-specific directories in your deployment.
  • Consider self-contained deployment to include the correct runtime.

Real-World Implications

This experience taught me that while AnyCPU provides excellent flexibility for managed code, it has limitations when dealing with native dependencies. These limitations become more apparent in scenarios like cloud deployments, ARM64 devices, and live demos.

Conclusion

The transition to ARM architecture is accelerating, and understanding the nuances of AnyCPU and native dependencies is more important than ever. By planning for architecture-specific deployments and implementing fallback strategies, you can build more resilient applications that can thrive in a multi-architecture world.

Exploring .NET 9’s Sequential GUIDs: A Game-Changer for XAF/XPO Developers

Exploring .NET 9’s Sequential GUIDs: A Game-Changer for XAF/XPO Developers

While researching useful features in .NET 9 that could benefit XAF/XPO developers, I discovered something particularly interesting: Version 7 GUIDs (RFC 9562 specification). These new GUIDs offer a crucial feature – they’re sortable.

This discovery brought me back to an issue I encountered two years ago while working on the SyncFramework. We faced a peculiar problem where Deltas were correctly generated but processed in the wrong order in production environments. The occurrences seemed random, and no clear pattern emerged. Initially, I thought using Delta primary keys (GUIDs) to sort the Deltas would ensure they were processed in their generation order. However, this assumption proved incorrect. Through testing, I discovered that GUID generation couldn’t be trusted to be sequential. This issue affected multiple components of the SyncFramework. Whether generating GUIDs in C# or at the database level, there was no guarantee of sequential ordering. Different database engines could sort GUIDs differently. To address this, I implemented a sequence service as a solution.Enter .NET 9 with its Version 7 GUIDs (conforming to RFC 9562 specification). These new GUIDs are genuinely sequential, making them reliable for sorting operations.

To demonstrate this improvement, I created a test solution for XAF with a custom base object. The key implementation occurs in the OnSaving method:


protected override void OnSaving()
{
    base.OnSaving();
    if (!(Session is NestedUnitOfWork) && Session.IsNewObject(this) && oid.Equals(Guid.Empty))
    {
        oid = Guid.CreateVersion7();
    }
}
        

Notice the use of CreateVersion7() instead of the traditional NewGuid(). For comparison, I also created another domain object using the traditional GUID generation:


protected override void OnSaving()
{
    base.OnSaving();
    if (!(Session is NestedUnitOfWork) && Session.IsNewObject(this) && oid.Equals(Guid.Empty))
    {
        oid = Guid.NewGuid();
    }
}
        

When creating multiple instances of the traditional GUID domain object, you’ll notice that the greater the time interval between instance creation, the less likely the GUIDs will maintain sequential ordering.

GUID Version 7

 

GUID Old Version

This new feature in .NET 9 could significantly simplify scenarios where sequential ordering is crucial, eliminating the need for additional sequence services in many cases. Here is the repo on GitHubHappy coding until next time!

Related article

On my GUID, common problems using GUID identifiers | Joche Ojeda