Exploring the Uno Platform: Handling Unsafe Code in Multi-Target Applications

Exploring the Uno Platform: Handling Unsafe Code in Multi-Target Applications

Exploring the Uno Platform: Handling Unsafe Code in Multi-Target Applications

This last weekend I wanted to do a technical experiment as I always do when I have some free time. I decided there was something new I needed to try and see if I could write about. The weekend turned out to be a beautiful surprise as I went back to test the Uno platform – a multi-OS, multi-target UI framework that generates mobile applications, desktop applications, web applications, and even Linux applications.

The idea of Uno is a beautiful concept, but for a long time, the tooling wasn’t quite there. I had made it work several times in the past, but after an update or something in Visual Studio, the setup would break and applications would become basically impossible to compile. That seems to no longer be the case!

Last weekend, I set up Uno on two different computers: my new Surface laptop with an ARM type of processor (which can sometimes be tricky for some tools) and my old MSI with an x64 type of processor. I was thrilled that the setup was effortless on both machines.

After the successful setup, I decided to download the entire Uno demo repository and start trying out the demos. However, for some reason, they didn’t compile. I eventually realized there was a problem with generated code during compilation time that turned out to be unsafe code. Here are my findings about how to handle the unsafe code that is generated.

AllowUnsafeBlocks Setting in Project File

I discovered that this setting was commented out in the Navigation.csproj file:

<!--<AllowUnsafeBlocks>true</AllowUnsafeBlocks>-->

When uncommented, this setting allows the use of unsafe code blocks in your .NET 8 Uno Platform project. To enable unsafe code, you need to remove the comment markers from this line in your project file.

Why It’s Needed

The <AllowUnsafeBlocks>true</AllowUnsafeBlocks> setting is required whenever you want to use “unsafe” code in C#. By default, C# is designed to be memory-safe, preventing direct memory manipulation that could lead to memory corruption, buffer overflows, or security vulnerabilities. When you add this setting to your project file, you’re explicitly telling the compiler to allow portions of code marked with the unsafe keyword.

Unsafe code lets you work with pointers and perform direct memory operations, which can be useful for:

  • Performance-critical operations
  • Interoperability with native code
  • Direct memory manipulation

What Makes Code “Unsafe”

Code is considered “unsafe” when it bypasses .NET’s memory safety guarantees. Specifically, unsafe code includes:

  1. Pointer operations: Using the * and -> operators with memory addresses
  2. Fixed statements: Pinning managed objects in memory so their addresses don’t change during garbage collection
  3. Sizeof operator: Getting the size of a type in bytes
  4. Stackalloc keyword: Allocating memory on the stack instead of the heap

Example of Unsafe Code

Here’s an example of unsafe code that might be generated:

unsafe
{
    int[] numbers = new int[] { 10, 20, 30, 40, 50 };
    
    // UNSAFE: Pinning an array in memory and getting direct pointer
    fixed (int* pNumbers = numbers)
    {
        // UNSAFE: Pointer declaration and manipulation
        int* p = pNumbers;
        
        // UNSAFE: Dereferencing pointers to modify memory directly
        *p = *p + 5;
        *(p + 1) = *(p + 1) + 5;
    }
}

Why Use Unsafe Code?

There are several legitimate reasons to use unsafe code:

  1. Performance optimization: For extremely performance-critical sections where you need to eliminate overhead from bounds checking or other safety features.
  2. Interoperability: When interfacing with native libraries or system APIs that require pointers.
  3. Low-level operations: For systems programming tasks that require direct memory manipulation, like implementing custom memory managers.
  4. Hardware access: When working directly with device drivers or memory-mapped hardware.
  5. Algorithms requiring pointer arithmetic: Some specialized algorithms are most efficiently implemented using pointer operations.

Risks and Considerations

Using unsafe code comes with significant responsibilities:

  • You bypass the runtime’s safety checks, so errors can cause application crashes or security vulnerabilities
  • Memory leaks are possible if you allocate unmanaged memory and don’t free it properly
  • Your code becomes less portable across different .NET implementations
  • Debugging unsafe code is more challenging

In general, you should only use unsafe code when absolutely necessary and isolate it in small, well-tested sections of your application.

In conclusion, I’m happy to see that the Uno platform has matured significantly. While there are still some challenges like handling unsafe generated code, the setup process has become much more reliable. If you’re looking to develop truly cross-platform applications with a single codebase, Uno is worth exploring – just remember to uncomment that AllowUnsafeBlocks setting if you run into compilation issues!

State Machines and Wizard Components: A Clean Implementation Approach

State Machines and Wizard Components: A Clean Implementation Approach

This past week, I have been working on a prototype for a wizard component. As you might know, in computer interfaces, wizard components (or multi-step forms) allow users to navigate through a finite number of steps or pages until they reach the end. Wizards are particularly useful because they don’t overwhelm users with too many choices at once, effectively minimizing the number of decisions a user needs to make at any specific moment.

The current prototype is created using XAF from DevExpress. If you follow this blog, you probably know that I’m a DevExpress MVP, and I wanted to use their tools to create this prototype.

I’ve built wizard components before, but mostly in a rush. Those previous implementations had the wizard logic hardcoded directly inside the UI components, with no separation between the UI and the underlying logic. While they worked, they were quite messy. This time, I wanted to take a more structured approach to creating a wizard component, so here are a few of my findings. Most of this might seem obvious, but sometimes it’s hard to see the forest for the trees when you’re sitting in front of the computer writing code.

Understanding the Core Concept: State Machines

To create an effective wizard component, you need to understand several underlying concepts. The idea of a wizard is actually rooted in system theory and computer science—it’s essentially an implementation of what’s called a state machine or finite state machine.

Theory of a State Machine

A state machine is the same as a finite state machine (FSM). Both terms refer to a computational model that describes a system existing in one of a finite number of states at any given time.

A state machine (or FSM) consists of:

  • States: Distinct conditions the system can be in
  • Transitions: Rules for moving between states
  • Events/Inputs: Triggers that cause transitions
  • Actions: Operations performed when entering/exiting states or during transitions

The term “finite” emphasizes that there’s a limited, countable number of possible states. This finite nature is crucial as it makes the system predictable and analyzable.

State machines come in several variants:

  • Deterministic FSMs (one transition per input)
  • Non-deterministic FSMs (multiple possible transitions per input)
  • Mealy machines (outputs depend on state and input)
  • Moore machines (outputs depend only on state)

They’re widely used in software development, hardware design, linguistics, and many other fields because they make complex behavior easier to visualize, implement, and debug. Common examples include traffic lights, UI workflows, network protocols, and parsers.

In practical usage, when someone refers to a “state machine,” they’re almost always talking about a finite state machine.

Implementing a Wizard State Machine

Here’s an implementation of a wizard state machine that separates the logic from the UI:

public class WizardStateMachineBase
{
    readonly List<WizardPage> _pages;
    int _currentIndex;

    public WizardStateMachineBase(IEnumerable<WizardPage> pages)
    {
        _pages = pages.OrderBy(p => p.Index).ToList();
        _currentIndex = 0;
    }

    public event EventHandler<StateTransitionEventArgs> StateTransition;

    public WizardPage CurrentPage => _pages[_currentIndex];

    public virtual bool MoveNext()
    {
        if (_currentIndex < _pages.Count - 1) { var args = new StateTransitionEventArgs(CurrentPage, _pages[_currentIndex + 1]); OnStateTransition(args); if (!args.Cancel) { _currentIndex++; return true; } } return false; } public virtual bool MovePrevious() { if (_currentIndex > 0)
        {
            var args = new StateTransitionEventArgs(CurrentPage, _pages[_currentIndex - 1]);
            OnStateTransition(args);

            if (!args.Cancel)
            {
                _currentIndex--;
                return true;
            }
        }
        return false;
    }

    protected virtual void OnStateTransition(StateTransitionEventArgs e)
    {
        StateTransition?.Invoke(this, e);
    }
}

public class StateTransitionEventArgs : EventArgs
{
    public WizardPage CurrentPage { get; }
    public WizardPage NextPage { get; }
    public bool Cancel { get; set; }

    public StateTransitionEventArgs(WizardPage currentPage, WizardPage nextPage)
    {
        CurrentPage = currentPage;
        NextPage = nextPage;
        Cancel = false;
    }
}

public class WizardPage
{
    public int Index { get; set; }
    public string Title { get; set; }
    public string Description { get; set; }
    public bool IsRequired { get; set; } = true;
    public bool IsCompleted { get; set; }
    
    // Additional properties specific to your wizard implementation
    public object Content { get; set; }
    
    public WizardPage(int index, string title)
    {
        Index = index;
        Title = title;
    }
    
    public virtual bool Validate()
    {
        // Default implementation assumes page is valid
        // Override this method in derived classes to provide specific validation logic
        return true;
    }
}

Benefits of This Approach

As you can see, by defining a state machine, you significantly narrow down the implementation possibilities. You solve the problem of “too many parts to consider” – questions like “How do I start?”, “How do I control the state?”, “Should the state be in the UI or a separate class?”, and so on. These problems can become really complicated, especially if you don’t centralize the state control.

This simple implementation of a wizard state machine shows how to centralize control of the component’s state. By separating the state management from the UI components, we create a cleaner, more maintainable architecture.

The WizardStateMachineBase class manages the collection of pages and handles navigation between them, while the StateTransitionEventArgs class provides a mechanism to cancel transitions if needed (for example, if validation fails). The newly added WizardPage class encapsulates all the information needed for each step in the wizard.

What’s Next?

The next step will be to control how the visual components react to the state of the machine – essentially connecting our state machine to the UI layer. This will include handling the display of the current page content, updating navigation buttons (previous/next/finish), and possibly showing progress indicators. I’ll cover this UI integration in my next post.

By following this pattern, you can create wizard interfaces that are not only user-friendly but also maintainable and extensible from a development perspective.

Source Code

egarim/WizardStateMachineTest

About US

YouTube

https://www.youtube.com/c/JocheOjedaXAFXAMARINC

Our sites

https://www.bitframeworks.com

https://www.xari.io

https://www.xafers.training

Let’s discuss your XAF Support needs together! This 1-hour call/zoom will give you the opportunity to define the roadblocks in your current XAF solution

Schedule a meeting with us on this link

Hard to Kill: Why Auto-Increment Primary Keys Can Make Data Sync Die Harder

Hard to Kill: Why Auto-Increment Primary Keys Can Make Data Sync Die Harder

Working with the SyncFramework, I’ve noticed a recurring pattern when discussing schema design with customers. One crucial question that often surprises them is about their choice of primary keys: “Are you using auto-incremental integers or unique identifiers (like GUIDs)?”

Approximately 90% of users rely on auto-incremental integer primary keys. While this seems like a straightforward choice, it can create significant challenges for data synchronization. Let’s dive deep into how different database engines handle auto-increment values and why this matters for synchronization scenarios.

Database Implementation Deep Dive

SQL Server

SQL Server uses the IDENTITY property, storing current values in system tables (sys.identity_columns) and caching them in memory for performance. During restarts, it reads the last used value from these system tables. The values are managed as 8-byte numbers internally, with new ranges allocated when the cache is exhausted.

MySQL

MySQL’s InnoDB engine maintains auto-increment counters in memory and persists them to the system tablespace or table’s .frm file. After a restart, it scans the table to find the maximum used value. Each table has its own counter stored in the metadata.

PostgreSQL

PostgreSQL takes a different approach, using separate sequence objects stored in the pg_class catalog. These sequences maintain their own relation files containing crucial metadata like last value, increment, and min/max values. The sequence data is periodically checkpointed to disk for durability.

Oracle

Oracle traditionally uses sequences and triggers, with modern versions (12c+) supporting identity columns. The sequence information is stored in the SEQ$ system table, tracking the last number used, cache size, and increment values.

The Synchronization Challenge

This diversity in implementation creates several challenges for data synchronization:

  1. Unpredictable Sequence Generation: Even within the same database engine, gaps can occur due to rolled-back transactions or server restarts.
  2. Infrastructure Dependencies: The mechanisms for generating next values are deeply embedded within each database engine and aren’t easily accessible to frameworks like Entity Framework or XPO.
  3. Cross-Database Complexity: When synchronizing across different database instances, coordinating auto-increment values becomes even more complex.

The GUID Alternative

Using GUIDs (Globally Unique Identifiers) as primary keys offers a solution to these synchronization challenges. While GUIDs come with their own set of considerations, they provide guaranteed uniqueness across distributed systems without requiring centralized coordination.

Traditional GUID Concerns

  • Index fragmentation
  • Storage size
  • Performance impact

Modern Solutions

These concerns have been addressed through:

  • Sequential GUID generation techniques
  • Improved indexing in modern databases
  • Optimizations in .NET 9

Recommendations

When designing systems that require data synchronization:

  1. Consider using GUIDs instead of auto-increment integers for primary keys
  2. Evaluate sequential GUID generation for better performance
  3. Understand that auto-increment values, while simple, can complicate synchronization scenarios
  4. Plan for the infrastructure needed to maintain consistent primary key generation across your distributed system

Conclusion

The choice of primary key strategy significantly impacts your system’s ability to handle data synchronization effectively. While auto-increment integers might seem simpler at first, understanding their implementation details across different databases reveals why GUIDs often provide a more robust solution for distributed systems.

Remember: Data synchronization is not a trivial problem, and your primary key strategy plays a crucial role in its success. Take the time to evaluate your requirements and choose the appropriate approach for your specific use case.

Till next time, happy delta encoding.

 
SyncFramework for XPO: Updated for .NET 8 & 9  and DevExpress 24.2.3!

SyncFramework for XPO: Updated for .NET 8 & 9 and DevExpress 24.2.3!

SyncFramework for XPO is a specialized implementation of our delta encoding synchronization library, designed specifically for DevExpress XPO users. It enables efficient data synchronization by tracking and transmitting only the changes between data versions, optimizing both bandwidth usage and processing time.

What’s New

  • Base target framework updated to .NET 8.0
  • Added compatibility with .NET 9.0
  • Updated DevExpress XPO dependencies to 24.2.3
  • Continued support for delta encoding synchronization
  • Various performance improvements and bug fixes

Framework Compatibility

  • Primary Target: .NET 8.0
  • Additional Support: .NET 9.0

Our XPO implementation continues to serve the DevExpress community.

Key Features

  • Seamless integration with DevExpress XPO
  • Efficient delta-based synchronization
  • Support for multiple database providers
  • Cross-platform compatibility
  • Easy integration with existing XPO and XAF applications

As always, if you own a license, you can compile the source code yourself from our GitHub repository. The framework maintains its commitment to providing reliable data synchronization for XPO applications.

Happy Delta Encoding! ?

 

SyncFramework Update: Now Supporting .NET 9 and EfCore 9!

SyncFramework Update: Now Supporting .NET 9 and EfCore 9!

SyncFramework Update: Now Supporting .NET 9!

SyncFramework is a C# library that simplifies data synchronization using delta encoding technology. Instead of transferring entire datasets, it efficiently synchronizes by tracking and transmitting only the changes between data versions, significantly reducing bandwidth and processing overhead.

What’s New

  • All packages now target .NET 9
  • BIT.Data.Sync packages updated to support the latest framework
  • Entity Framework Core packages upgraded to EF Core 9
  • Various minor fixes and improvements

Available Implementations

  • SyncFramework for XPO: For DevExpress XPO users
  • SyncFramework for Entity Framework Core: For EF Core users

Package Statistics

Our packages have been serving the community well, with steady adoption:

  • BIT.Data.Sync: 2,142 downloads
  • BIT.Data.Sync.AspNetCore: 1,064 downloads
  • BIT.Data.Sync.AspNetCore.Xpo: 521 downloads
  • BIT.Data.Sync.EfCore: 1,691 downloads
  • BIT.Data.Sync.EfCore.Npgsql: 1,120 downloads
  • BIT.Data.Sync.EfCore.Pomelo.MySql: 1,172 downloads
  • BIT.Data.Sync.EfCore.Sqlite: 887 downloads
  • BIT.Data.Sync.EfCore.SqlServer: 982 downloads

Resources

NuGet Packages
Source Code

As always, you can compile the source code yourself from our GitHub repository. The framework continues to provide reliable data synchronization across different platforms and databases.

Happy Delta Encoding! ?

The Dark Magic of Dynamic Assemblies: A Tale of .NET Emit

The Dark Magic of Dynamic Assemblies: A Tale of .NET Emit

Every programmer encounters that one technology that draws them into the darker arts of software development. For some, it’s metaprogramming; for others, it’s assembly hacking. For me, it was the mysterious world of runtime code generation through Emit in the early 2000s, during my adventures with XPO and the enigmatic Sage Accpac ERP.

The Quest Begins: A Tale of Documentation and Dark Arts

Back in the early 2000s, when the first version of XPO was released, I found myself working alongside my cousin Carlitos in our startup. Fresh from his stint as an ERP consultant in the United States, Carlitos brought with him deep knowledge of Sage Accpac, setting us on a path to provide integration services for this complex system.

Our daily bread and butter were custom reports – starting with Crystal Reports before graduating to DevExpress’s XtraReports and XtraPivotGrid. But we faced an interesting challenge: Accpac’s database was intentionally designed to resist reverse engineering, with flat tables devoid of constraints or relationships. All we had was their HTML documentation, a labyrinth of interconnected pages holding the secrets of their entity relationships.

Genesis: When Documentation Meets Dark Magic

This challenge birthed Project Genesis, my ambitious attempt to create an XPO class generator that could parse Accpac’s documentation. The first hurdle was parsing HTML – a quest that led me to CodePlex (yes, I’m dating myself here) and the discovery of HTMLAgilityPack, a remarkable tool that still serves developers today.

But the real dark magic emerged when I faced the challenge of generating classes dynamically. Buried in our library’s .NET books, I discovered the arcane art of Emit – a powerful technique for runtime assembly and class generation that would forever change my perspective on what’s possible in .NET.

Diving into the Abyss: Understanding Emit

At its core, Emit is like having a magical forge where you can craft code at runtime. Imagine being able to write code that writes more code – not just as text to be compiled later, but as actual, executable IL instructions that the CLR can run immediately.

AssemblyName assemblyName = new AssemblyName("DynamicAssembly");
AssemblyBuilder assemblyBuilder = AssemblyBuilder.DefineDynamicAssembly(
    assemblyName, 
    AssemblyBuilderAccess.Run
);

This seemingly simple code opens a portal to one of .NET’s most powerful capabilities: dynamic assembly generation. It’s the beginning of a spell that allows you to craft types and methods from pure thought (and some carefully crafted IL instructions).

The Power and the Peril

Like all dark magic, Emit comes with its own dangers and responsibilities. When you’re generating IL directly, you’re dancing with the very fabric of .NET execution. One wrong move – one misplaced instruction – and your carefully crafted spell can backfire spectacularly.

The first rule of Emit Club is: don’t use Emit unless you absolutely have to. The second rule is: if you do use it, document everything meticulously. Your future self (and your team) will thank you.

Modern Alternatives and Evolution

Today, the .NET ecosystem offers alternatives like Source Generators that provide similar power with less risk. But understanding Emit remains valuable – it’s like knowing the fundamental laws of magic while using higher-level spells for daily work.

In my case, Project Genesis evolved beyond its original scope, teaching me crucial lessons about runtime code generation, performance optimization, and the delicate balance between power and maintainability.

Conclusion: The Magic Lives On

Twenty years later, Emit remains one of .NET’s most powerful and mysterious features. While modern development practices might steer us toward safer alternatives, understanding these fundamental building blocks of runtime code generation gives us deeper insight into the framework’s capabilities.

For those brave enough to venture into this realm, remember: with great power comes great responsibility – and the need for comprehensive unit tests. The dark magic of Emit might be seductive, but like all powerful tools, it demands respect and careful handling.