In this article, we will be discussing why it is sometimes useful to wrap your synchronous implementation in an asynchronous implementation.
Introduction
Async programming is an important paradigm in modern software development, allowing you to perform long-running tasks without blocking the calling thread. Async programming is particularly useful in scenarios where the operation may take a long time to complete, or when the operation is interacting with a slow resource, such as a network or a database.
One common scenario where you may need to wrap your synchronous implementation in an asynchronous implementation is when you are working with an API or a library that does not provide async versions of its methods. In these cases, you can use the Task.Run method to wrap the synchronous methods in a task, allowing you to use the await keyword to asynchronously wait for the operation to complete.
Example: Wrapping a Synchronous Data Processor
To illustrate this concept, let’s consider the following synchronous IDataProcessor interface:
public interface IDataProcessor
{
void ProcessData(IEnumerable<IData> data);
}
This interface has a single method, ProcessData, which takes an IEnumerable of IData objects as input and processes the data.
Now let’s say that you want to use this IDataProcessor interface in an async context, but the interface does not provide an async version of the ProcessData method. To use this interface asynchronously, you can create an async wrapper class that wraps the synchronous implementation in an async implementation.
Here is an example of how you can wrap the synchronous IDataProcessor implementation in an asynchronous implementation:
public class AsyncDataProcessor : IDataProcessor
{
private readonly IDataProcessor _dataProcessor;
public AsyncDataProcessor(IDataProcessor dataProcessor)
{
_dataProcessor = dataProcessor;
}
public Task ProcessDataAsync(IEnumerable<IData> data)
{
return Task.Run(() => _dataProcessor.ProcessData(data));
}
}
This implementation has a single method, ProcessDataAsync, which takes an IEnumerable of IData objects as input and asynchronously processes the data. The implementation uses the Task.Run method to wrap the synchronous ProcessData method in a task, allowing it to be called asynchronously using the await keyword.
To use this implementation, you can simply create an instance of AsyncDataProcessor and call the ProcessDataAsync method, passing in the list of data as an argument. For example:
var dataProcessor = new AsyncDataProcessor(new DataProcessor());
await dataProcessor.ProcessDataAsync(data);
This code creates an instance of the AsyncDataProcessor class and calls the ProcessDataAsync method, passing in the data object as an argument. The await keyword is used to asynchronously wait for the data processing to complete.
Conclusion
In this article, we discussed why it is sometimes useful to wrap your synchronous implementation in an asynchronous implementation. We used the Task.Run method to wrap a synchronous IDataProcessor implementation in an async implementation, allowing us to use the await keyword
In this article, we will be discussing how to define an async interface based on a synchronous interface example.
Introduction
Async interfaces are useful when you need to perform asynchronous operations within your application. Async interfaces allow you to define methods that return a Task object instead of a value, allowing you to use the await keyword to asynchronously wait for the operation to complete.
One important aspect of async programming is the ability to cancel an async operation. This is particularly useful in scenarios where the async operation may take a long time to complete, or when the operation is no longer needed. To support cancellation in async operations, you can use a cancellation token.
Step 1: Define the Synchronous Interface
The first step in defining an async interface is to define the synchronous version of the interface. This will serve as the basis for the async interface.
Here is an example of a synchronous interface:
public interface IDataProcessor
{
void ProcessData(IEnumerable<IData> data);
}
This interface has a single method, ProcessData, which takes an IEnumerable of IData objects as input and processes the data.
Step 2: Define the Async Interface
Now that we have defined the synchronous interface, we can define the async version of the interface. To do this, we simply need to modify the ProcessData method to return a Task object instead of void, and add the async keyword to the method.
Here is the async version of the IDataProcessorAsync interface:
public interface IDataProcessorAsync
{
Task ProcessDataAsync(IEnumerable<IData> data, CancellationToken cancellationToken);
}
In this version of the interface, we have added a cancellationToken parameter to the ProcessDataAsync method. This parameter is of type CancellationToken, which is a struct that represents a cancellation request.
Step 3: Implement the Async Interface
Now that we have defined the async version of the interface, we can implement it in a class. To implement the async interface, we simply need to define a method that matches the signature of the ProcessDataAsync method and uses the await keyword to asynchronously perform the data processing.
Here is an example of an async implementation of the IDataProcessorAsync interface:
public class DataProcessor : IDataProcessorAsync
{
public async Task ProcessDataAsync(IEnumerable<IData> data, CancellationToken cancellationToken)
{
// Process the data asynchronously
await Task.Delay(1000, cancellationToken);
}
}
This implementation has a single method, ProcessDataAsync, which takes an IEnumerable of IData objects and a cancellationToken as input and asynchronously processes the data. In this example, the data processing is simulated using the Task.Delay method, which causes the task to wait for a specified amount of time before completing. The cancellationToken is passed to the Task.Delay method as an argument, allowing the task to be cancelled if a cancellation request is made.
Step 4: Use the Async Interface
Now that we have defined and implemented the async interface, we can use it in our application. To use the async interface, we simply need to create an instance of the implementing class and call the async method using the await keyword.
Here is an example of how to use the async IDataProcessor interface:
var cts = new CancellationTokenSource();
var dataProcessor = new DataProcessor();
await dataProcessor.ProcessDataAsync(data, cts.Token);
This code creates a CancellationTokenSource object, which is used to create and manage a cancellation token. The cts.Token property is then passed to the ProcessDataAsync method as a cancellation token. The await keyword is used to asynchronously wait for the data processing to complete.
To cancel the async operation, you can call the Cancel method on the CancellationTokenSource object. This will trigger a cancellation request, which will cause the ProcessDataAsync method to throw a TaskCanceledException when the await keyword is encountered.
cts.Cancel();
Conclusion
In this article, we discussed how to define an async interface based on a synchronous interface example, including the use of a cancellation token. We defined the synchronous version of the interface, modified it to include a cancellation token and return a Task object, implemented the async interface in a class, and demonstrated how to use your new async interface implementation.
Modern AspNetCore applications use the built-in web server kestrel,this server is usually bound to the localhost address using the ports 5000 and 5001 for http and https.
But what if you want to run 2 applications in the same server? then you have a problem because if you use the default ports one of the applications will not start correctly.
This can easily be solved by changing the default ports in your WebHostBuilder as shown below
The problem with the example above is that the URLs are hardcoded, so here is a better solution
public static IHostBuilder CreateHostBuilder(string[] args) =>
Host.CreateDefaultBuilder(args)
.ConfigureWebHostDefaults(webBuilder => {
var config = new ConfigurationBuilder()
.SetBasePath(Directory.GetCurrentDirectory())
.AddJsonFile("hosting.json", optional: true)
.AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
.AddCommandLine(args)
.AddEnvironmentVariables()
.Build();
webBuilder.UseUrls(config["server.urls"]);
webBuilder.UseStartup<Startup>();
});
the example above uses a configuration builder to merge the appsettings.json and the hosting.json in a single configuration object, then with use the value of the property “server.urls” as base URL/port for our application
Sometime we want to reuse our Blazor components in another apps, the best way to do this is to create a razor library, this process of create a razor library is not different from create a normal class library to share code. There is only one exception, razor components might need to reference JavaScript or CSS files. This problem can be easily solve in 2 steps as shown below.
1) Create a class that inherits from TagHelperComponent,,this class should include the tags that you want to include in the html header section of your app
using Microsoft.AspNetCore.Html;
using Microsoft.AspNetCore.Razor.TagHelpers;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace MyBlazorApp
{
[HtmlTargetElement("head")]
public class MyTagHelper: TagHelperComponent
{
private string Tags=
@"
<!-- ZXingBlazor -->
<script src=""_content/ZXingBlazor/lib/barcodereader/zxing.js""></script>
<script src = ""_content/ZXingBlazor/lib/barcodereader/barcode.js"" ></ script >
< !--ZXingBlazor-- >
< !--Signature Pad -->
<script src = ""_content/Mobsites.Blazor.SignaturePad/bundle.js"" ></ script >
< link href=""_content/Mobsites.Blazor.SignaturePad/bundle.css"" rel=""stylesheet"" />
< link href=""_content/Ultra.PropertyEditors.Module.Blazor/js/signaturepropertyeditor.js""/>
<!-- Signature Pad -->
<!-- HTML Editor -->
<link href = ""//cdn.quilljs.com/1.3.6/quill.snow.css"" rel=""stylesheet"">
<link href = ""//cdn.quilljs.com/1.3.6/quill.bubble.css"" rel=""stylesheet"">
<script src = ""https://cdn.quilljs.com/1.3.6/quill.js"" ></ script >
<script src=""_content/Blazored.TextEditor/quill-blot-formatter.min.js""></script>
<script src = ""_content/Blazored.TextEditor/Blazored-BlazorQuill.js"" ></ script >
< !--HTML Editor -->
";
public override Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
{
if (string.Equals(context.TagName, "head", StringComparison.OrdinalIgnoreCase))
{
output.PostContent.AppendHtml(Tags).AppendLine();
}
return Task.CompletedTask;
}
}
}
*Note: to reference JavaScript or CSS from any razor library you can use the following syntax,please notice the doble quotes.
2) Create an extension method in the “Microsoft.Extensions.DependencyInjection” namespace so you can easily add your tag helper to the service collection
using Microsoft.AspNetCore.Razor.TagHelpers;
using Microsoft.Extensions.DependencyInjection;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Microsoft.Extensions.DependencyInjection
{
public static class StartupExtensions
{
public static IServiceCollection AddMyHtmlTags(this IServiceCollection services)
{
services.AddTransient<ITagHelperComponent, MyTagHelper>();
return services;
}
}
}
Here is an example on how to use your new extension in your startup class
public void ConfigureServices(IServiceCollection services
{
services.AddMyHtmlTags();
}
The LogLevel section in the appsettings.json file does not affect the .NET Framework tracing mechanism, which is used by XPO to log the queries, still we have a few work arounds for a Netcore app
We can implement our own logger as shown here https://docs.devexpress.com/XPO/403928/best-practices/how-to-log-sql-queries#xpo-logger-net
We can set the value of the logging switch by reflection using the following snippet
Ok, so far, our synchronization framework is only implemented for an in-memory database that we use for testing purposes.
Now let’s implement a different use case, lets add synchronization functionality to an entity framework core DbContext.
As I explained before, the key part of synchronizing data using delta encoding is to be able to track the differences that happen to a data object, in this case, a relational database.
these are the task that we need to do to accomplish our goal
Find out how entity framework converts the changes that happen to the objects to SQL commands
Decide what information we need to track and save as a delta
Create the infrastructure to save deltas (IDeltaStore)
Create the infrastructure to process deltas (IDeltaProcessor)
Implement the synchronization node functionality in an Entity Framework DbContext(ISyncClientNode)
Create a test scenario
1 Find out how entity framework converts the changes that happen to the objects to SQL commands
In our companies (BitFrameworks & Xari) we have been working in data synchronization for a while, but all this work has been done in the XPO realm.
public abstract class ModificationCommandBatch
{
/// <summary>
/// The list of conceptual insert/update/delete <see cref="ModificationCommands" />s in the batch.
/// </summary>
public abstract IReadOnlyList<IReadOnlyModificationCommand> ModificationCommands { get; }
now let’s take look into the ModificationCommand https://github.com/dotnet/efcore/blob/main/src/EFCore.Relational/Update/ModificationCommand.cs this class provides all the information about the changes that will be converted into SQL commands, which means that if we serialize this object and save it as a delta we can then send it to another node and replicate the changes…VOILA!!!
So now we know where the changes that we need to keep track of are, now let’s try to understand how those changes are converted into SQL commands and then executed into the database.
2 Decide what information we need to track and save as a delta
Entity framework core uses dependency injection to be able to handle different database engines so the idea here is that there are a lot of small services that can be replaced in other to create a different implementation, for example, SQLite, SqlServer, Postgres, etc …
After a lot of digging, I found that the service that is in charge of generating the update commands (insert, update and delete) UpdateSqlGenerator
this class implements IUpdateSqlGenerator https://github.com/dotnet/efcore/blob/main/src/EFCore.Relational/Update/IUpdateSqlGenerator.cs and as you can see all methods receive a string builder and a ModificationCommand so this is the service in charge of translating the ModificationCommand into SQL commands and SQL commands are easy to serialize because they are just text, so this is what we are going to serialize and save as a delta
public interface IUpdateSqlGenerator
{
/// <summary>
/// Generates SQL that will obtain the next value in the given sequence.
/// </summary>
/// <param name="name">The name of the sequence.</param>
/// <param name="schema">The schema that contains the sequence, or <see langword="null" /> to use the default schema.</param>
/// <returns>The SQL.</returns>
string GenerateNextSequenceValueOperation(string name, string? schema);
/// <summary>
/// Generates a SQL fragment that will get the next value from the given sequence and appends it to
/// the full command being built by the given <see cref="StringBuilder" />.
/// </summary>
/// <param name="commandStringBuilder">The builder to which the SQL fragment should be appended.</param>
/// <param name="name">The name of the sequence.</param>
/// <param name="schema">The schema that contains the sequence, or <see langword="null" /> to use the default schema.</param>
void AppendNextSequenceValueOperation(
StringBuilder commandStringBuilder,
string name,
string? schema);
/// <summary>
/// Appends a SQL fragment for the start of a batch to
/// the full command being built by the given <see cref="StringBuilder" />.
/// </summary>
/// <param name="commandStringBuilder">The builder to which the SQL fragment should be appended.</param>
void AppendBatchHeader(StringBuilder commandStringBuilder);
/// <summary>
/// Appends a SQL command for deleting a row to the commands being built.
/// </summary>
/// <param name="commandStringBuilder">The builder to which the SQL should be appended.</param>
/// <param name="command">The command that represents the delete operation.</param>
/// <param name="commandPosition">The ordinal of this command in the batch.</param>
/// <returns>The <see cref="ResultSetMapping" /> for the command.</returns>
ResultSetMapping AppendDeleteOperation(
StringBuilder commandStringBuilder,
IReadOnlyModificationCommand command,
int commandPosition);
/// <summary>
/// Appends a SQL command for inserting a row to the commands being built.
/// </summary>
/// <param name="commandStringBuilder">The builder to which the SQL should be appended.</param>
/// <param name="command">The command that represents the delete operation.</param>
/// <param name="commandPosition">The ordinal of this command in the batch.</param>
/// <returns>The <see cref="ResultSetMapping" /> for the command.</returns>
ResultSetMapping AppendInsertOperation(
StringBuilder commandStringBuilder,
IReadOnlyModificationCommand command,
int commandPosition);
/// <summary>
/// Appends a SQL command for updating a row to the commands being built.
/// </summary>
/// <param name="commandStringBuilder">The builder to which the SQL should be appended.</param>
/// <param name="command">The command that represents the delete operation.</param>
/// <param name="commandPosition">The ordinal of this command in the batch.</param>
/// <returns>The <see cref="ResultSetMapping" /> for the command.</returns>
ResultSetMapping AppendUpdateOperation(
StringBuilder commandStringBuilder,
IReadOnlyModificationCommand command,
int commandPosition);
}
3 Create the infrastructure to save deltas (Implementing IDeltaStore)
Now is time to create a delta store, this is an easy one since we only need to inherit from our delta store base and save the information in an entity framework DbContext, so here is the implementation
4 Create the infrastructure to process deltas (implementing IDeltaProcessor)
So far, we know what we need to store in the deltas which basically is SQL commands and their parameters so it means to process those SQL Commands our delta processor needs to create a database connection and execute SQL commands
public EFDeltaProcessor(DbContext dBContext)
{
_dBContext = dBContext;
}
public EFDeltaProcessor(string connectionstring, string DbEngineAlias, string ProviderInvariantName)
{
this.CurrentDbEngine = DbEngineAlias;
this.connectionString = connectionstring;
try
{
factory = DbProviderFactories.GetFactory(ProviderInvariantName);
}
catch (Exception ex)
{
Debug.WriteLine(ex.Message);
throw new Exception("There was a problem creating the database connection using DbProviderFactories.GetFactory. Please your make sure the DbProviderFactory for your database is registered https://docs.microsoft.com/en-us/dotnet/api/system.data.common.dbproviderfactories.registerfactory?view=net-5.0", ex);
}
//TODO check provider registration later
//DbProviderFactories.RegisterFactory("Microsoft.Data.SqlClient", SqlClientFactory.Instance);
}
there are a few things to notice in that class, first, it has 2 constructors because we need 2 different ways to create the connection to the database, one using the entity framework DbContext and one using ADO.NET DbProviderFactory
All the magic happens in the ProcessDeltas method, this method is in charge of, extract the content of the deltas and transforming them into SQL commands and parameters, and then executing the command.
please notice that the content of each delta is an instance of ModificationCommandData
which is a class that allows us to store multiple SQL commands (for different database engines) and their parameters
5 Implement the synchronization node functionality in an Entity Framework DbContext(ISyncClientNode)
At the moment we are able to produce and process deltas for entity framework relational, so the next step is to implement the functionality of synchronization client node by implementing the following interface
I’m not going to show the implementation of the server since that implementation is generic and uses the same delta store and delta processor that we created at the beginning of this article. for more information check the following links
So far, all our test exists inside the same process, so they communicate through variables, in real-life scenarios nodes won’t exist in the same process and most of the time not even in the same location.
The easiest and most standard way to implement client-server communication in the dotnet world is a rest API, so let’s define an API client and a server service, lets start with the API client
public class SyncFrameworkHttpClient : ISyncFrameworkClient
{
HttpClient _httpClient;
public string DeltaStoreId { get; }
public SyncFrameworkHttpClient(HttpClient httpClient,string NodeId)
{
this.DeltaStoreId = NodeId;
_httpClient = httpClient;
_httpClient.DefaultRequestHeaders.Add("NodeId", NodeId);
this.DeltaStoreId = NodeId;
}
public SyncFrameworkHttpClient(string BaseAddress, string DeltaStoreId):this(new HttpClient() { BaseAddress=new Uri(BaseAddress)},DeltaStoreId)
{
}
public virtual async Task PushAsync(IEnumerable<IDelta> Deltas, CancellationToken cancellationToken = default)
{
try
{
List<Delta> toserialzie = new List<Delta>();
foreach (IDelta delta in Deltas)
{
toserialzie.Add(new Delta(delta));
}
cancellationToken.ThrowIfCancellationRequested();
DataContractJsonSerializer js = new DataContractJsonSerializer(typeof(List<Delta>));
MemoryStream msObj = new MemoryStream();
js.WriteObject(msObj, toserialzie);
msObj.Position = 0;
StreamReader sr = new StreamReader(msObj);
string jsonDeltas = sr.ReadToEnd();
var data = new StringContent(jsonDeltas, Encoding.UTF8, "application/json");
await _httpClient.PostAsync("/Sync/Push", data, cancellationToken).ConfigureAwait(false);
}
catch (Exception ex)
{
var message = ex.Message;
throw;
}
}
public virtual async Task<List<Delta>> FetchAsync(Guid startindex, string identity, CancellationToken cancellationToken = default)
{
var QueryParams = new Dictionary<string, string>();
QueryParams.Add(nameof(startindex), startindex.ToString());
QueryParams.Add(nameof(identity), identity);
cancellationToken.ThrowIfCancellationRequested();
var query = HttpUtility.ParseQueryString("");
foreach (KeyValuePair<string, string> CurrentParam in QueryParams)
{
query[CurrentParam.Key] = CurrentParam.Value;
}
var reponse = await _httpClient.GetStringAsync($"/Sync/Fetch?{query.ToString()}").ConfigureAwait(false);
using (var ms = new MemoryStream(Encoding.Unicode.GetBytes(reponse)))
{
DataContractJsonSerializer deserializer = new DataContractJsonSerializer(typeof(List<Delta>));
List<Delta> Deltas = (List<Delta>)deserializer.ReadObject(ms);
return Deltas;
}
//List<Delta> Deltas = JsonConvert.DeserializeObject<List<Delta>>(reponse);
return null;
}
}
it’s an implementation of the ISyncFrameworkClient interface using HTTP communication
Fetch: uses an HTTP get request
Push: uses an HTTP post request
Also, the “nodeid” header is added to the request, you will understand why when we implement the server part.
Now that we have defined the contract for the client and also provided the base implementation using an HTTP client, its time to define what a client node is, please take a look at the code below
public static class ISyncClientNodeExtensions
{
public static async Task<List<Delta>> FetchAsync(this ISyncClientNode instance, CancellationToken cancellationToken = default)
{
cancellationToken.ThrowIfCancellationRequested();
var LastDetalIndex = await instance.DeltaStore.GetLastProcessedDeltaAsync(cancellationToken).ConfigureAwait(false);
return await instance.SyncFrameworkClient.FetchAsync(LastDetalIndex, instance.Identity, cancellationToken).ConfigureAwait(false);
}
public static async Task PullAsync(this ISyncClientNode instance, CancellationToken cancellationToken = default)
{
cancellationToken.ThrowIfCancellationRequested();
var Deltas = await instance.FetchAsync(cancellationToken).ConfigureAwait(false);
if (Deltas.Any())
{
await instance.DeltaProcessor.ProcessDeltasAsync(Deltas, cancellationToken).ConfigureAwait(false);
Guid index = Deltas.Max(d => d.Index);
await instance.DeltaStore.SetLastProcessedDeltaAsync(index, cancellationToken).ConfigureAwait(false);
}
}
public static async Task PushAsync(this ISyncClientNode instance, CancellationToken cancellationToken = default)
{
cancellationToken.ThrowIfCancellationRequested();
var LastPushedDelta = await instance.DeltaStore.GetLastPushedDeltaAsync(cancellationToken).ConfigureAwait(false);
var Deltas = await instance.DeltaStore.GetDeltasAsync(LastPushedDelta,cancellationToken).ConfigureAwait(false);
if (Deltas.Any())
{
var Max = Deltas.Max(d => d.Index);
await instance.SyncFrameworkClient.PushAsync(Deltas, cancellationToken).ConfigureAwait(false);
await instance.DeltaStore.SetLastPushedDeltaAsync(Max,cancellationToken).ConfigureAwait(false);
}
}
}
so, this is how the SyncClientNode is structured
Let’s move to the server-side now, here the idea is to be able to host multiple delta store and delta processors and also to be able to introduce custom logic either saving the deltas into the delta store or processing the deltas into a data object
Well, it’s time to create our first implementation, first, we need a place to store the deltas generated in the process of tracking changes in a data object.
To keep the Implementation simple, we will create a delta store that saves the deltas in memory. This delta store can also be used for testing purposes
public class MemoryDeltaStore : BIT.Data.Sync.DeltaStoreBase
{
IList<IDelta> Deltas;
public MemoryDeltaStore(IEnumerable<IDelta> Deltas)
{
this.Deltas = new List<IDelta>(Deltas);
}
protected MemoryDeltaStore()
{
}
//TODO fix the use of MemoryDb
public MemoryDeltaStore(DeltaStoreSettings deltaStoreSettings) : base(deltaStoreSettings)
{
}
public async override Task SaveDeltasAsync(IEnumerable<IDelta> deltas, CancellationToken cancellationToken = default)
{
cancellationToken.ThrowIfCancellationRequested();
foreach (IDelta delta in deltas)
{
cancellationToken.ThrowIfCancellationRequested();
Deltas.Add(new Delta(delta));
}
}
public override Task<IEnumerable<IDelta>> GetDeltasFromOtherNodes(Guid startindex, string identity, CancellationToken cancellationToken = default)
{
cancellationToken.ThrowIfCancellationRequested();
var result = Deltas.Where(d => d.Index.CompareTo(startindex) > 0 && string.Compare(d.Identity, identity, StringComparison.Ordinal) != 0);
return Task.FromResult(result.Cast<IDelta>());
}
public override Task<IEnumerable<IDelta>> GetDeltasAsync(Guid startindex, CancellationToken cancellationToken = default)
{
cancellationToken.ThrowIfCancellationRequested();
return Task.FromResult(Deltas.Where(d => d.Index.CompareTo(startindex) > 0).ToList().Cast<IDelta>());
}
Guid LastProcessedDelta;
public override async Task<Guid> GetLastProcessedDeltaAsync(CancellationToken cancellationToken = default)
{
return LastProcessedDelta;
}
public override async Task SetLastProcessedDeltaAsync(Guid Index, CancellationToken cancellationToken = default)
{
cancellationToken.ThrowIfCancellationRequested();
LastProcessedDelta = Index;
}
Guid LastPushedDelta;
public async override Task<Guid> GetLastPushedDeltaAsync(CancellationToken cancellationToken)
{
return LastPushedDelta;
}
public async override Task SetLastPushedDeltaAsync(Guid Index, CancellationToken cancellationToken = default)
{
cancellationToken.ThrowIfCancellationRequested();
LastPushedDelta = Index;
}
public async override Task<int> GetDeltaCountAsync(Guid startindex, CancellationToken cancellationToken = default)
{
cancellationToken.ThrowIfCancellationRequested();
return Deltas.Count(d => d.Index.CompareTo(startindex) > 0);
}
public async override Task PurgeDeltasAsync(CancellationToken cancellationToken = default)
{
cancellationToken.ThrowIfCancellationRequested();
Deltas.Clear();
}
}
Now that we have a delta store in place, we need a data object, something that we can use to generate data and track how the data is changing, so again for test purposes, I have implemented a small in-memory database
public class SimpleDatabase
{
public IDeltaProcessor DeltaProcessor { get; set; }
public string Identity { get; set; }
public IDeltaStore DeltaStore { get; set; }
public SimpleDatabase(IDeltaStore deltaStore, string identity, List<SimpleDatabaseRecord> Data)
{
Identity = identity;
DeltaStore = deltaStore;
this.Data= Data;
}
List<SimpleDatabaseRecord> Data;
public async void Update(SimpleDatabaseRecord Instance)
{
var ObjectToUpdate = Data.FirstOrDefault(x => x.Key == Instance.Key);
if (ObjectToUpdate != null)
{
var Index = Data.IndexOf(ObjectToUpdate);
Data[Index] = Instance;
SimpleDatabaseModification item = new SimpleDatabaseModification(OperationType.Update, Instance);
await SaveDelta(item);
}
}
private async Task SaveDelta(SimpleDatabaseModification item)
{
var Delta = DeltaStore.CreateDelta(Identity,item);
await DeltaStore.SaveDeltasAsync(new List<IDelta>() { Delta }, default);
}
public void Delete(SimpleDatabaseRecord Instance)
{
var ObjectToDelete= Data.FirstOrDefault(x=>x.Key==Instance.Key);
if(ObjectToDelete!=null)
{
Data.Remove(ObjectToDelete);
}
}
public async Task Add(SimpleDatabaseRecord Instance)
{
Data.Add(Instance);
SimpleDatabaseModification item = new SimpleDatabaseModification(OperationType.Add, Instance);
await SaveDelta(item);
}
}
In the class above I have implemented methods to add, delete and update a record. Inside each method I create an instance of an object called SimpleDatabaseModification, I used that object to keep track of which operation is happening and keep a copy of the instance being handle at the moment, that is what we are going to save as a delta.
public class SimpleDatabaseModification
{
public OperationType Operation { get; set; }
public SimpleDatabaseModification(OperationType operation, SimpleDatabaseRecord record)
{
Operation = operation;
Record = record;
}
public SimpleDatabaseRecord Record { get; set; }
}
Now since the SimpleDatabase is saving the records on a list the next step is to create a processor that gets the information out of the delta and use it to recreate that list, so here is the delta processor
Now that we have defined the bases contracts necessary for synchronization, we can define some base classes that implement those contracts, the main idea behind these base classes is to, later on, add the possibility to inject configurations with .net dependency injection.
/// <summary>
/// Represents a transaction made to the database
/// </summary>
public interface IDelta
{
double Epoch { get; set; }
/// <summary>
/// Who created the delta
/// </summary>
string Identity { get; set; }
/// <summary>
/// The unique identifier of the delta
/// </summary>
Guid Index { get; }
/// <summary>
/// The database transaction(s) that represents this delta
/// </summary>
byte[] Operation { get; set; }
}
Epoch: The date when the operation happened
Identity: Who created the delta
Index: A sortable GUID
Operation: The database transaction(s) that represents this delta
public interface IDeltaProcessor
{
/// <summary>
/// Extracts the content of an IEnumerable of deltas and process it on the current data object
/// </summary>
/// <param name="deltas">an IEnumerable of deltas</param>
/// <param name="cancellationToken">Cancellation token</param>
/// <returns>An empty task</returns>
Task ProcessDeltasAsync(IEnumerable<IDelta> deltas, CancellationToken cancellationToken);
}
As you can see the delta processor is really simple, it only contains one method that is in charge of getting the content of a group of deltas and process those differences in the current data object
public interface IDeltaStore
{
string Identity { get; }
void SetIdentity(string Identity);
/// <summary>
/// Saves the IEnumerable<IDelta> of deltas in the current store
/// </summary>
/// <param name="deltas">The IEnumerable<IDelta> to be saved</param>
/// <param name="cancellationToken">A cancellation token</param>
/// <returns>An empty task</returns>
Task SaveDeltasAsync(IEnumerable<IDelta> deltas, CancellationToken cancellationToken);
/// <summary>
/// Gets an IEnumerable<IDelta> of deltas generated by other nodes with indeces greater than the start index
/// </summary>
/// <param name="startindex">The start index</param>
/// <param name="myIdentity">The identity of the current node </param>
/// <param name="cancellationToken">a Cancellation token</param>
/// <returns>An IEnumerable with deltas generated by other nodes</returns>
Task<IEnumerable<IDelta>> GetDeltasFromOtherNodes(Guid startindex, string myIdentity, CancellationToken cancellationToken);
/// <summary>
/// Get all deltas in the store with an index greater than the start index
/// </summary>
/// <param name="startindex">The start index</param>
/// <param name="cancellationToken">a cancellation token</param>
/// <returns>An IEnumerable of deltas</returns>
Task<IEnumerable<IDelta>> GetDeltasAsync(Guid startindex, CancellationToken cancellationToken);
/// <summary>
/// Gets the count of deltas with indeces greater that the start index
/// </summary>
/// <param name="startindex">The start index</param>
/// <param name="cancellationToken">A cancellation token</param>
/// <returns>The count</returns>
Task<int> GetDeltaCountAsync(Guid startindex, CancellationToken cancellationToken);
/// <summary>
/// Gets the index of the last delta process by this data object
/// </summary>
/// <param name="cancellationToken"> cancellation token</param>
/// <returns>The index of the last delta process by this data object</returns>
Task<Guid> GetLastProcessedDeltaAsync(CancellationToken cancellationToken);
/// <summary>
/// Sets the index of the last delta process by this data object
/// </summary>
/// <param name="Index">The index to be saved</param>
/// <param name="cancellationToken">A cancellation token</param>
/// <returns>An empty task</returns>
Task SetLastProcessedDeltaAsync(Guid Index, CancellationToken cancellationToken);
/// <summary>
/// Gets the index of the last delta pushed to the server node
/// </summary>
/// <param name="cancellationToken">A cancellation token</param>
/// <returns>the index of the last delta pushed to the server node</returns>
Task<Guid> GetLastPushedDeltaAsync(CancellationToken cancellationToken);
/// <summary>
/// Sets the index of the last delta pushed to the server node
/// </summary>
/// <param name="Index">The index to be saved</param>
/// <param name="cancellationToken">A cancellation token</param>
/// <returns>An empty task</returns>
Task SetLastPushedDeltaAsync(Guid Index, CancellationToken cancellationToken);
/// <summary>
/// Delete all deltas in the store
/// </summary>
/// <param name="cancellationToken">A cancellation token</param>
/// <returns>An empty task</returns>
Task PurgeDeltasAsync(CancellationToken cancellationToken);
}
SaveDeltasAsync :Saves the IEnumerable<IDelta> of deltas in the current store
GetDeltasFromOtherNodes: Gets an IEnumerable<IDelta> of deltas generated by other nodes with indices greater than the start index
GetDeltasAsync: Get all deltas in the store with an index greater than the start index
GetDeltaCountAsync: Gets the count of deltas with indices greater than the start index
GetLastProcessedDeltaAsync: Gets the index of the last delta process by this data object
SetLastProcessedDeltaAsync: Sets the index of the last delta process by this data object
GetLastPushedDeltaAsync: Gets the index of the last delta pushed to the server node
SetLastPushedDeltaAsync(Guid Index, CancellationToken cancellationToken): Sets the index of the last delta pushed to the server node
PurgeDeltasAsync: Delete all deltas in the store
That’s all for this post in the next post we will define the bases classes that implement the interfaces described above